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Abstract

We investigate the effects of automation on total factor productivity (TFP). Using industry-level panel

data for nine countries, we find that more intensive use of industrial robots has a significantly positive

effect on TFP. Specifically, an increase of one standard deviation in the robot intensity is associated

with more than 6% higher TFP. Moreover, we find that the robot intensity increases with Chinese im-

port competition and that automation is associated with higher wages and unchanged or higher

employment.

JEL classification: C23, J24, O33, O47

1. Introduction

The manufacturing sector has been under pressure in most developed countries. The rise of and competition from low-

wage countries has led many manufacturing firms in the developed world to either closedown or offshore parts of the

manufacturing process. This has led to a visible shift in manufacturing activity, as shown in Figure 1. In 1995, the devel-

oping countries produced around 24% of all manufacturing goods in the world. In 2007, this number was up by 13%

points to 37%, and in 2011, the developing countries were responsible for almost half of total world production (47%).

In the same period, the employment share of the manufacturing sector in the developed world has declined from

around 16% in 1995 to about 12% in 2011 (Figure 2). Conversely, the employment share of the manufacturing sec-

tor in the developing countries has increased from around 11% in 2003 to 13% in 2011 and has exceeded the share

in the developed countries since 2009.

It has been argued that the above development might in the longer run jeopardize continued welfare improve-

ments in the developed part of the world. The current downsizing of the manufacturing sector is, therefore, a cause

for concern among policy makers in these countries. Therefore, they have been looking for clever ways to bring back

the manufacturing production and, especially, the manufacturing jobs that are expected to be lost as a consequence

of this development.

It seems natural to ask whether robots have a role to play in this process. Can they create the growth in productiv-

ity that is needed to keep a manufacturing sector in the developed world? In recent years, the costs of automation
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have decreased and machines have improved in terms of their ability to handle more advanced tasks. Moreover,

robots have become easier to program, and therefore, to use in different types of manufacturing industries.

Furthermore, innovation is vital to competitiveness in the global economy, and the development and use of new tech-

nology, including automation in manufacturing, Industry 4.0 (which refers to the coordinated use of robots),

Figure 1. Manufacturing production in developing countries as a share of total world production. Note: The data source is the

World Input–Output Database (WIOD) in current prices. The data covers 40 countries: 27 EU countries (Austria, Germany, the

Netherlands, Belgium, Greece, Poland, Bulgaria, Hungary, Portugal, Cyprus, Ireland, Romania, the Czech Republic, Italy, the Slovak

Republic, Denmark, Latvia, Slovenia, Estonia, Lithuania, Spain, Finland, Luxembourg, Sweden, France, Malta, and the UK) and 13

other major countries (the United States, Canada, India, Japan, China, South Korea, Australia, Taiwan, Turkey, Indonesia, Russia,

Brazil, and Mexico). It covers 35 industries, including 14 manufacturing industries. The 40 countries cover more than 85% of world

GDP. To cover the remaining countries in the world, WIOD includes a region called the Rest of the World (RoW) that proxies for all

remaining countries in the world. WIOD covers the period from 1995 to 2011 and is measured in US dollars. For more information:

see www.wiod.org and Timmer et al. (2015). We have divided the countries into developed and developing countries according to

the World Bank classification. The developing countries consist of Bulgaria, Romania, Brazil, Mexico, China, South Korea, India,

Indonesia, Turkey, and RoW. The Figures shows total value-added generated in manufacturing in the developing countries as a

share of total value-added generated in manufacturing in the world.

Figure 2. Employment shares in manufacturing, developed and developing countries. Note: The data source is the World Input–

Output Database, which covers 40 countries and 35 industries (see note to Figure 1). We have divided the countries into developed

and developing according to the World Bank classification. We measure the employment share in manufacturing as the number of

persons engaged in the manufacturing sector relative to the total number of persons engaged.
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artificial intelligence, sensors, and other information technology (IT)-based technologies in manufacturing are at the

forefront of discussions and important topics on the policy agenda. The business press has also emphasized the im-

portance of automation for some time, and it is in general expected that technological innovations will play an im-

portant role for productivity and growth (Council of Economic Advisers, 2016).

Thus, there seems to be great belief in the potential of robots for providing productivity improvements—especially

in developed countries where labor costs are high. Industrial robots are certainly also growing in numbers. According

to the International Federation of Robotics (2011), the number of operational industrial robots in the world

increased by 4% per year from 2004 to 2009, and most of this increase took place in developed countries. Despite

these developments, we still know surprisingly little about the actual productivity and employment effects of indus-

trial robots.

Obviously, labor productivity must be expected to increase from automation, because industrial robots can direct-

ly substitute for some unskilled workers. An early study by Fleck (1984) has thus estimated that one robot can re-

place two to six workers on average. A more interesting question is whether robots can also increase total factor

productivity (TFP) by, for example, increasing the quantity and quality of the products, decrease waste and/or

expanding the product portfolio, and how that affects employment.

Figure 3 shows the development in aggregate labor productivity (i.e. value-added per worker) in the manufactur-

ing sector across the 14 developed countries that we use in our empirical analysis. It is seen that labor productivity

has increased by more than 35% over the 10-year period from 1997 to 2007. This is equivalent to an annual increase

of 3.1%. It is also seen that value-added has been growing, while employment has been falling, which can be

explained by both capital deepening and higher TFP.

In this article, we shall investigate whether an increase in TFP is related to investments in industrial robots. We

also study the labor market effects from increasing automation, and the drivers of investments in industrial robots.

Do industries in the developed world invest in industrial robots as a consequence of increasing competition from

low-wage countries?

The dataset that we use comes from the International Federation of Robotics (IFR) that collects these data for a

number of different industries and countries. We thus have data for 10 manufacturing industries in nine countries for

the period 2004–2007. We use these data to estimate a production function at the industry level. In doing this, we

distinguish explicitly between information and communication technology (ICT) capital and non-ICT capital, there-

by follow the approach taken in the literature on ICT capital and productivity (the meta-study by Stiroh, 2005). To

test the importance of robots for TFP in the industry, we include a robot-intensity index, calculated as the number of

industrial robots relative to the non-ICT capital stock in the industry.

Figure 3. Aggregate labor productivity in manufacturing, developed countries. Note: The data source is the EUKLEMS Database.

Value-added is total PPP-corrected valued added in the 14 developed countries included in our study: Austria, Belgium, the Czech

Republic, Denmark, Spain, Finland, France, Germany, Hungary, Italy, Japan, the Netherlands, Sweden, and the UK. Employment is

the total number of person engaged in these countries. Labor productivity is value-added divided by employment. All three varia-

bles are measured relative to the level in 1997.
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A potential drawback to using the quantity of industrial robots as an explanatory variable is that quality changes

and differences are not accounted for. If the quality of industrial robots increases over time, the quantity of industrial

robots will put too little weight on later vintages of robots and too much weight on early vintages. This is especially

problematic if quality increases are substantial. There are many indications of quality increases over vintages of

robots: In 1975, an average robot had five axes, a capacity of 6 kg and a reach of 1 m. These numbers had increased

to 21 axes, a capacity of more than 120 kg and a reach of 2 m in 1995 and to 32 axes, a capacity of more than

1000 kg and a reach of at least 3 m in 2015 (Tilley, 2017). Similarly, if there are differences across industries or coun-

tries in the quality of robots used, these are not accounted for when using the number of robots as the measure of

automation at the industry level.

In order to deal with this, we perform two sets of regressions. First, we estimate level regressions using the quan-

tity of industrial robots as an explanatory variable. This analysis does not control for differences in robot quality

across industries and over time—which may, therefore, contaminate the empirical results. Second, we estimate fixed-

effects and first-difference regressions that rely on the changes in the quantity of robots within an industry in a coun-

try over time to identify the parameters of interest. These estimations thus eliminate the effects of systematic time-

invariant differences in the quality of the robot stock across industries and countries, for example, as a result of in-

dustry and country-specific robot types. To handle the issue that the quality of robots acquired may change over

time, as a result of different vintages, we focus on a short period of time for which quality changes of robots are likely

to be relatively modest. To the best of our knowledge, this article is the first to study the relationship between auto-

mation and productivity when quality differences and changes are accounted for.

The main result of the article is that automation of the production process has a positive and significant effect on

productivity. The magnitude of the effect is such that an increase in the robot-intensity index by one standard devi-

ation is associated with an increase in TFP of more than 6.5%. This result is remarkably robust to the use of different

estimation methods and alternative samples.

Still, we are careful not to claim causality. Although the result survives when we control for unobserved product-

ivity differences across industries and countries using either a fixed-effects or first-difference estimation, it might still

reflect unobserved shocks that affect both productivity and the robot intensity. To get closer to a causal interpret-

ation, we instrument the robot-intensity index using lagged changes in the index, which is a commonly used ap-

proach in the literature to deal with potential endogeneity of the explanatory variable (Stiroh, 2005). Our findings

provide strong support for a causal relationship between the robot intensity and productivity.

Another important result is that the robot-intensity index increases more within industries that are affected more

by Chinese import competition. This suggests that manufacturing industries in the developed countries react to

increasing competition by adopting robot technology that contributes to higher TFP.

Finally, we find that an increase in automation is associated with higher average wages and unchanged or higher

employment at the industry level. Combined with the positive productivity effect of industrial robots, this at least

indicates that increased automation may be a way to bring back manufacturing production in the developed coun-

tries; and that this need not come at the expense of labor.

The rest of the article is structured as follows. In the next section, we present a short literature review. In Section

3, the theoretical and empirical framework is presented in detail. In Section 4, we present the data and descriptive sta-

tistics, whereas the empirical analysis is contained in Sections 5 and 6. Section 7 concludes.

2. Literature review

There has been considerable focus on technology as a source of higher productivity growth in manufacturing.

However, the typical measure of technology used in empirical studies is not a robot-based measure. Instead, technol-

ogy is often measured as expenditures on R&D, the number of patents, and/or the amount of ICT capital.

Alternatively, it is measured through survey questions about innovation activities (Hall, 2011; Hall et al., 2010).

During the past two decades, many studies of ICT capital have been carried out using both aggregate data and

firm-level data (Stiroh, 2002; Jorgenson et al., 2008; van Ark et al., 2008; Draca et al., 2009; Bloom et al., 2012).

The purpose of this literature has been (i) to estimate the contribution of ICT (or IT) capital to output growth and (ii)

to determine whether ICT (or IT) capital is associated with excess returns. The approach taken has been to split total

capital into ICT capital and non-ICT capital and to estimate a production function that includes both types of capital

in addition to labor and intermediate inputs. If the estimated output elasticity of ICT capital is found to exceed its

4 L. Kromann et al.
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factor share, this is interpreted as evidence of excess returns, and hence that ICT capital contributes to TFP growth.

We also follow this approach below in the applied estimation framework. Early studies found that ICT capital had

no impact on TFP. This might have been due to noisy data and poor estimation methods. A recent study by Cardona

et al. (2013), which summarizes the findings of more recent empirical studies, concludes that ICT capital does indeed

play an important role in the productivity statistics, but that the evidence is most pronounced for the United States,

while the evidence for European countries is more ambiguous.

However, these “traditional” technology measures affect a number of activities outside the production process it-

self. R&D spending and the number of patents are thus relevant input and output measures, respectively, of know-

ledge production. ICT capital includes computer hardware, computer software, and telecommunication equipment,

and much (or most) of this is used in activities such as distribution, accounting, administration, knowledge produc-

tion, sales, and marketing. Therefore, these measures are not particularly informative about the automation level of

the production process itself and hence not well suited for analyzing the role played by industrial robots.

The only micro-level papers that address automation and firm performance are Bartel et al. (2007, 2009). Bartel

et al. (2007) find that the use of more advanced computerized numerically controlled machines in the valve-

manufacturing industry in the United States raises productivity by shortening setup time, production time, and in-

spection time. Bartel et al. (2009) perform the same analysis for the UK and find similar results.

Another strand of literature that considers the relationship between productivity and new technology is the

endogenous-growth literature. Romer (1990) present a variety-based endogenous-growth model where growth is

driven by an expanding set of complementary intermediate inputs. Steady-state growth can be positive and depends

on long-run factor allocation. The growth generating sector is an R&D sector where production of new ideas takes

place. Jones and Williams (1998) link the theoretical models of endogenous-growth literature to the results in the em-

pirical literature on productivity. Specifically, they study the analytical relationship between the true social rate of re-

turn to R&D and the coefficient estimates from regressions of TFP growth on R&D investments. The authors

conclude: “Despite the methodological limitations of the productivity literature—[.]—we show that the estimates in

this literature represent lower bounds on the social rate of return to R&D”, thereby linking these two strands of lit-

erature. The approach that we follow in the present paper is that from the productivity literature.

Only a few papers so far have used data from IFR on the number of industrial robots at the industry level.

Acemoglu and Restrepo (2018) analyze long-run effects of the increased use of industrial robot in the US labor mar-

ket. A robust negative effect of robots on employment and wages is found across US commuting zones between 1990

and 2007: one more robot per thousand workers reduces the employment to population ratio by about 0.2% points

and wages by 0.37%. Graetz and Michaels (2018) study the impact of robot use on labor productivity growth over

the period 1993 to 2007 using long differences. Their findings suggest that increased robot use contributed around

0.36% points to annual labor productivity growth, while at the same time raising TFP and lowering output prices.

Neither of these studies take into account that the quality of industrial robots may have changed over time (from

1990 to 2007). As explained above, this may distort their measure of the robot stock, which may in turn bias the

obtained results. This is, especially, relevant for the productivity study of Graetz and Michaels (2018).

3. Theoretical and empirical framework

We extend the production function used in the literature on ICT capital and productivity—as discussed above—to ac-

count for the effects of industrial robots. Specifically, we want to separate the effects of industrial robots from any

effects of ICT capital. Industrial robots are part of the non-ICT capital measure, but the data does not allow us to

split up non-ICT capital into industrial robots and other types of non-ICT capital. Instead, we include a robot-inten-

sity index that provides a measure of the number of industrial robots relative to the amount of total non-ICT capital

as an extra regressor. Including such an index in addition to the overall measure of non-ICT capital, is in line with

the approach taken in the literature on human capital and growth, where both a headcount of labor and a quality

index of labor are included (see below). It should be emphasized that the index measures the quality of non-ICT cap-

ital by introducing a measure of capital composition. It does not account for quality changes in robots over time or

across industries and countries as we discussed in the Section 1. If the robot-intensity index is found to have a separ-

ate positive effect, we take this as evidence that industrial robots have an additional/excess effect on value-added

(and hence a TFP effect) compared to other types of non-ICT capital.

The logic in our empirical specification is based on the following production function:

Automation and productivity 5
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Yijt ¼ A Cijt

� �a
Qijt

� �b
Hijt

� �c
; (1)

where Y denotes value-added in industry i of country j in year t. C is input of ICT capital, Q is input of non-ICT cap-

ital, and H is labor input. Following common practice, we assume that this relationship can be approximated by a

Cobb-Douglas production function. Importantly, input of non-ICT capital and labor input both have a quality and a

quantity dimension, such that Q ¼ qK and H ¼ hL, where K denotes the quantity of non-ICT capital, and L denotes

the number of hours worked, while h is (average) human capital per worker and q is (average) quality of non-ICT

capital.

The above production function can be re-written in log-form as:

yijt ¼ aijt þ acijt þ blog qijtð Þ þ bkijt þ clog hijt

� �
þ clijt; (2)

where y, a, c, k, and l are the logs of Y, A, C, K, and L, respectively.

To arrive at our empirical specification, we need to define measures of q and h. For q, we want to take the inten-

sity of industrial robots into account. Therefore, we use the following measure of q:

qijt ¼ enRIijt ; (3)

where RI is an index for the stock of industrial robots relative to the total non-ICT capital stock, and n captures the

effect of the index on the quality of the non-ICT capital stock. Specifically, the robot-intensity index is constructed as

follows:

RIijt ¼
Rijt

Kijt
; (4)

where R is the quantity of industrial robots in industry i of country j in year t. Similar intensity indices have been

used in related strands of literature, for example, by Feenstra and Hanson (1999), who apply outsourcing intensities

in an analysis of the causes of increasing wage inequality, and by Lichtenberg and Griliches (1984), who use R&D-

intensities in their study of productivity growth. The robot-intensity index will be discussed in more detail in the next

section after the data have been introduced.

When it comes to h, we simply assume that it is a constant in our baseline model implying that the term contain-

ing h becomes part of the constant term in the regression model. However, in one of our robustness analyses, we

measure h following the approach in the macro models of human capital and growth applied by, for example, Hall

and Jones (1999) and Klenow and Rodriguez-Clare (1997). They assume a human-capital function of the following

form:

hijt ¼ ekSijt ; (5)

where S is the share of skilled workers among all workers in industry i of country j in year t, and k captures the effect

of the share of skilled workers on the quality of labor. This approach follows Gemmell (1996), who recommends

using shares of workers with different skill levels (defined by educational attainment) as a measure of labor quality

rather than standard measures such as years of schooling or enrollment rates, as the latter measures will tend to con-

flate the human capital stock and the accumulation of human capital in growth regressions.

Given the above assumptions, the production function used for estimation purposes can be expressed as:

yijt ¼ aijt þ acijt þ dRIijt þ bkijt þ gSijt þ clijt; (6)

where d ¼ bn is the marginal return to the robot-intensity index, RI, and g ¼ ck is the marginal return to S, the share

of skilled workers. Note that if there are constant returns to scale in the production, the sum of the three elasticities,

a, b, and c, equals one.

The parameter of main interest in this study is d. If industrial robots have an extra effect compared to other types

of non-ICT capital, industries with higher (or faster growing) RI are expected to have higher (or faster growing)

productivity, that is, d should be positive. This is the hypothesis that we investigate in the following.

We refer to a positive value of d as an effect of industrial robots on TFP. Even though the effect works through

the composition of non-ICT capital, we interpret this as an effect working through TFP since such effects are normal-

ly part of the unexplained component in productivity estimations. A higher effect of industrial robots compared to

6 L. Kromann et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icc/advance-article-abstract/doi/10.1093/icc/dtz039/5540937 by C

openhagen Business School user on 05 August 2019



other types of non-ICT capital could stem from the fact that they not only substitute for other types of non-ICT cap-

ital (and labor) but that they can improve the quality of the products produced and help expand the product port-

folio. Thus, many devices, designs, varieties, and quality improvements could not be produced without the help of

industrial robots.1

When estimating (6), we need to put some restrictions on aijt in order to be able to identify d and to obtain consist-

ent estimates of the involved parameters. In the simplest case where aijt can be expressed as the sum of a constant, a0,

and a random error that is uncorrelated with the regressors, ordinary least squares (OLS) estimation of (6) will result

in consistent estimators of a, b, c, g, and d.

However, if there are TFP differences between countries or between industries that are correlated with (but not

caused by) the robot intensity (or the other regressors), the OLS estimators will become inconsistent. Therefore, we

include country and industry fixed effects to allow aijt to vary systematically across countries and industries due to,

for example, different production technologies. As discussed in Section 1, the fixed effects will also control for sys-

tematic differences in the quality of the robot stock across industries and countries not captured by our robot-

intensity index. Furthermore, we include year fixed effects to allow aijt to vary across time to capture productivity

trends that might be correlated with the development in the number of robots used.

As discussed above, we also include a measure of human capital into our production function. As an increasing

use of industrial robots requires a workforce that is more skilled in order to adopt and use the robots efficiently, and

because a more skilled workforce might in itself influence productivity positively, it is important to control for the de-

velopment in human capital in the regressions.

In sum, we end up with the following empirical model:

yijt ¼ acijt þ bkijt þ clijt þ dRIijt þ gSijt þ a0 þ bi þ dj þ et þ �ijt; (7)

where bi, dj, and et are the industry, country, and year fixed effects, respectively. Although this specification is likely

to capture most of the TFP differences that may be correlated with (but not caused by) the robot intensity, there is

still a risk that some differences may remain at the industry-country level. To deal with this possibility, we also

estimate the model in (6) using industry � country fixed effects, and we also estimate the model in first differences.

Both of these methods eliminate the effects of time-invariant factors that are specific to a given industry in a given

country.

Still, if there are time-varying shocks to aijt that also affect the robot-intensity index (which would be the case if

productivity shocks drive the investments in industrial robots), this may render our robot-intensity index in (6) en-

dogenous, and hence cause the OLS, fixed-effects and first-difference estimators of d to be inconsistent. To check for

this, we instrument the level of the robot intensity in a given industry-country cell using lagged changes in the vari-

able. This is a standard approach used in the literature (Stiroh, 2005).

4. Data and descriptive statistics

Three different data sources are used to construct the dataset that we use in the subsequent analyses. First, input and

output data are taken from the EUKLEMS database November 2009 release, which contains industry-level measures

of output, inputs, productivity, and worker quality for 25 European countries, Japan, and the United States for the

period 1970–2007. O’Mahony and Timmer (2009) provide a description of the EUKLEMS data. Second, we use

data on industrial robots from the International Federation of Robotics (2011) to develop our industry-level measure

of the robot intensity. Third, we use the World Input–Output Database (WIOD) to construct the measures of import

competition. See Timmer et al. (2015) for a description of the WIOD data.

IFR uses the definition of a “manipulating industrial robot” given by the ISO 8373 standard from the

International Organization for Standardization. This standard defines an industrial robot as: An automatically

1 A positive effect of the robot-intensity index may also reflect that industrial robots (at their current level) are associated

with higher marginal returns than other types of non-ICT capital, but due to, for example, adjustment costs, there is still

“underinvestment” in robots. In any case, finding a positive effect of the robot-intensity index will indicate that further

investments in industrial robots will increase labor productivity for a given level of capital, which is equivalent to a TFP

effect.
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controlled, reprogrammable, multipurpose manipulator programmable in three or more axes, which may be either

fixed in place or mobile for use in industrial automation applications (International Federation of Robotics, 2011: 6).

IFR collects their data from the producers of robots. They provide data both on shipments/sales of robots to indus-

tries in different countries and on the operating stock of robots in different countries. In calculating the operating

stock, it is assumed that the average operating service life of an industrial robot is 12 years. In other words, the data-

base uses a “one-hose shay” depreciation method.2

Even though we refer to the quantity of industrial robots as a stock variable, it is not a capital stock in the usual

sense of the word, as the measure is not quality adjusted. A specific robot type may thus obtain higher capacity over

time; cf. the example in the Section 1. Robots also become more and more integrated over time such that a single

robot may now handle production tasks that were previously performed by a number of different robots. In this case,

the number of robots will underestimate the actual stock and degree of automation in sectors and countries where

investments in recent years have been relatively high, and it will overestimate the stock in sectors and countries where

investments in recent years have been low. Furthermore, the large variation in the complexity of different types of in-

dustrial robots is not taken into account when using the number of industrial robots instead of the amount of robot

capital as a measure of automation.

IFR has developed two price indices for the period 1990 to 2005; one is quality adjusted and one is not. The dif-

ference between the two price indices measures the development in robot quality from 1990 to 2005. To the best of

our knowledge, this is the only index that exists for the quality of industrial robots. It is difficult to assess how precise

the index is. However, we can at least use it as an approximation—to assess whether quality changes in industrial

robots potentially is an important issue that we have to consider. 3

In Figure 4, we present the two price indices in panel a, and we include the deduced quality index in panel b. It is

seen that the quality of robots increases markedly and, for example, doubles during the period 1993–2005. Taken at

face value this implies that one 2005-vintage industrial robot is as productive as two 1993-vintage industrial robots.

Moreover, the average annual improvement in quality is 6.2% for the full period and 2.3% for the 5 years up to

2005. In other words, according to this index, quality changes are indeed something that should be considered in an

analysis of industrial robots, and we, therefore, spend considerable effort dealing with this potential problem in the

empirical analyses below.

From the EUKLEMS database, we get data on value-added, ICT capital, non-ICT capital, hours worked by per-

sons engaged (labor input), and the share of skilled workers at the industry level. Capital inputs are measured by the

total capital service flows, which are obtained by aggregating over the different asset types assuming a translog func-

tion of the services of the individual capital types (O’Mahony and Timmer, 2009). Industrial robots do not constitute

a separate type of capital in the EUKLEMS, which is why we apply the robot index described above as our measure

of automation. We use PPP (purchasing power parity) corrected variables since the levels regressions require that

cross-country variables are measured in comparable units (Inklaar and Timmer, 2008 for a description of these varia-

bles). Given that the period analyzed is 2004–2007, the results are not influenced by the large cyclical fluctuations fi-

nancial crisis in the following years.

2 A model of depreciation, in which a robot delivers the same services from purchase until failure, with zero scrap value.

Also known as the light bulb model of depreciation.
3 IFR performs a rough quality adjustment of the robot price index (International Federation of Robotics, 2007: Annex C).

The applied method is based on production-cost mark-up and uses the following assumptions: (i) the robot is composed

of three parts: a control unit; a mechanical unit whose characteristics are changed over time (the arm, drives, sensors,

etc.); and a mechanical unit with fixed characteristics (e.g. casings and certain steel structures). (ii) Cost shares distri-

bution: control unit (20%); mechanical unit with changing characteristics (40%); mechanical unit with fixed characteris-

tics (40%). (iii) the characteristics of the control unit are the same as those of computers. The cost index for the control

unit is therefore approximated by a mark-up using the US producer price indices (PPI) for computers. (iv)

Measurements of improvements in the mechanical characteristics are limited to: total handling capacity in kg (20%);

Repetition accuracy in mm (30%); total aggregated speed of all six axes in degrees per second (B/s) (30%); and total

maximum reach in mm (20%). It is assumed that costs are directly proportional to the weighted increase in mechanical

characteristics. Based on the above assumptions, the quality-adjusted prices are calculated to express what robots

would cost, given that they were produced with a base-year level of the above characteristics.
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By merging the IFR data on the stock of industrial robots with the EUKLEMS data, we obtain a dataset covering

nine countries and 10 manufacturing industries for the period 2004–2007.4 Even though the IFR data also includes

Figure 4. Price index of industrial robots for international comparison (based on 1990 USD conversion rate). (a) Price index w and

w/o quality adjustment. (b) Quality index of industrial robots.

4 The countries in the study are Japan, Germany, UK, France, Italy, Spain, Sweden, Finland, and Denmark. The industries

are (ISIC rev. 4 industry codes in parentheses): food, beverages, and tobacco (10–12); textiles, leather, and wearing
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data for sectors outside manufacturing, we disregard these as we want to focus specifically on the manufacturing sec-

tor. Furthermore, we have information on the shipment of industrial robots to an additional five countries.5 These

additional countries are low-intensive users of industrial robots, implying that the shipments can be used as proxies

for the changes in their stocks of robots (by ignoring any depreciation of existing robots). Consequently, these coun-

tries will be included in a robustness analysis of the main results.

The robot intensity is measured as the number of industrial robots per million Euros non-ICT capital (measured

in 1997 German prices using PPPs from the EUKLEMS database). Table 1 shows the overall robot intensity in the

manufacturing sector for the nine countries in our sample in 2004 and 2007. As can be seen, the variation across

countries is large. Germany is by far the most robot-intensive country, whereas the UK is the least robot-intensive

country.

In all countries, except Japan, the robot intensity increased between 2004 and 2007. This reflects that the total

number of industrial robots in the nine countries in Table 1 increased from around 600,000 in 2004 to around

630,000 in 2007; an increase of around 6%. The largest relative increases are found in countries with a relatively

Table 1. Total robot intensity across countries, 2004 and 2007

Country 2004 2007

Denmark 0.39 0.63

Spain 0.52 0.62

Finland 0.33 0.40

France 0.55 0.66

Germany 1.60 1.80

Italy 0.72 0.80

Japan 0.98 0.85

Sweden 0.32 0.38

UK 0.25 0.30

Note: The robot intensity in a country is measured as the total number of robots per million Euros non-ICT capital (measured in 1997 German prices) across the

10 industries in the manufacturing sector (see Table 2 for a list of these).

Source: International Federation of Robotics (2011).

Table 2. Total robot intensity across industries, 2004 and 2007

Industry 2004 2007

Food, beverages, and tobacco 0.13 0.17

Textiles, leather, and wearing apparel 0.05 0.05

Wood and products of wood and cork 0.61 0.59

Paper, printing, and publishing 0.04 0.04

Chemical, rubber, plastic, and fuel 0.48 0.56

Glass, ceramics, stone, and mineral products 0.18 0.20

Metal and machinery 0.46 0.49

Electrical and optical equipment 0.93 0.69

Motor vehicles and other transport equipment 3.03 3.09

Other manufacturing products 3.57 2.67

Note: The robot intensity of an industry is measured as the total number of robots per million Euros non-ICT capital (measured in 1997 German prices) across the

nine countries in the sample (see Table 1 for a list of these).

Source: International Federation of Robotics (2011).

apparel (13–15); wood and products of wood and cork (16); paper, printing, and publishing (17–18); chemical, rubber,

plastic, and fuel (19–22); glass, ceramics, stone, mineral products n.e.c. (23); metal and machinery (24, 25, 28); electrical

and optical equipment (26, 27); motor vehicles, trailers, semi-trailers, and other transport equipment (29, 30); and other

manufacturing products (31, 32).
5 These countries are Austria, Belgium, the Netherlands, the Czech Republic, and Hungary.
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low initial number of robots, such as Denmark, where the number of robots per million Euros non-ICT capital (1997

German prices) increased by 0.24; an increase of more than 60%. The falling robot intensity in Japan is due to an in-

crease in non-ICT capital that exceeded the increase in industrial robots between 2004 and 2007. Note also that

Japan holds more than half of the total number of industrial robots in the nine countries.

The robot intensity also varies considerably across industries as shown in Table 2, which presents the total num-

ber of industrial robots per million Euros non-ICT capital (1997 German prices) across the nine countries for each of

the 10 manufacturing industries. Motor vehicles and other transport equipment and other manufacturing products

are by far the most robot-intensive industries. The intensive use of robots within Motor vehicles and other transport

equipment partly explains Germany’s overall dominating role in the use of industrial robots. The least robot-

intensive industry in both 2004 and 2007 was paper, printing, and publishing.

Note that the development in the robot intensity between 2004 and 2007 also varies across industries. In three

out of 10 industries, the robot intensity actually decreased between 2004 and 2007, and these industries were rela-

tively robot intensive, to begin with. Electrical and optical equipment thus experienced both a fall in the number of

industrial robots and an increase in non-ICT capital. In Section 6.1, we investigate one potential explanation behind

the different observed changes in the robot intensity between 2004 and 2007: the extent to which industries are

exposed to import competition from China.

In sum, Tables 1 and 2 display considerable variation across countries and industries in the use of robots. A closer

examination of the data reveals that the two industries with the largest variation across countries in 2007 are Wood

and products of wood and cork and motor vehicles and other transport equipment. In the former industry, a value of

0.11 is observed for France, while Germany has a value of 4.29. In the latter industry, Sweden has a value of 1.09

and Italy has a value of 9.56. Similarly, the industry with the least variation across countries in 2007 is Glass, ceram-

ics, stone, and mineral products, where Japan has the lowest value (0.10) and Germany the highest (0.57).

The considerable variation across countries and industries in the use of robots can be caused by many different

factors. Cross-country variation in wages and in the prices of industrial robots may be part of the explanation for the

country differences, but the industry structure of a country also affects its overall robot intensity. The fact that Japan

has one of the highest numbers of industrial robots is not surprising as 47% of its manufacturing sales are concen-

trated within Motor vehicles and other transport equipment and electrical and optical equipment, which are among

the most robot-intensive industries.

Across industries, differences in the supply of industrial automation solutions and different experience with auto-

mation as well as variation in production strategies also play a role. The number of industrial robots will thus depend

on whether an industry is dominated by firms that produce customized products or firms that have mass production,

as the potential for automation is much higher in the latter case.

In Table 3, we present summary statistics for the dependent and explanatory variables used in the empirical analy-

ses below. Note that, on average, the amount of non-ICT capital in an industry is approximately four times larger

Table 3. Summary statistics

2004 Standard deviation 2007 Standard deviation Min Max

Value-added per person engaged (Y) 42.47 28.78 47.67 32.26 12.52 181.71

Persons engaged (L) 564.41 666.87 548.12 653.33 14.65 3411.17

Capital per person engaged 16.18 17.17 17.27 18.09 1.41 105.12

Non-ICT capital per person engaged (K) 13.28 15.34 13.74 15.82 0.88 97.08

ICT capital per person engaged (C) 2.89 2.61 3.53 3.28 0.19 14.77

Robot intensity (RI) 0.92 2.18 0.94 1.93 0 13.79

Industrial robots 6707 19,122 7097 20,406 0 137,310

Number of observations 89 89

Note: Persons engaged are measured in millions hours worked, and value-added and capital are measured in millions of Euros using 1997 German prices. The

robot intensity is measured as the total number of robots per million 1997 GER-EURO-PPP non-ICT capital. The industry “Other manufacturing products” is

excluded for Sweden because values for non-ICT capital are not available. 2007 values for Japan are missing and replaced by 2006 values, except in the case of indus-

trial robots.

Source: International Federation of Robotics (2011) and EUKLEMS.
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than the amount of ICT capital, although ICT capital is becoming still more important. The average number of in-

dustrial robots in an industry is approximately 7000, but as shown in Tables 1 and 2, the variation is considerable.

5. Empirical results

In this section, we present the estimation results for our model in (7). Section 5.1 contains our baseline results, which

are based on (pooled) OLS and fixed-effects regressions of the model in (7), and where we treat human capital as a

constant. Section 5.2 presents estimates of the model using alternative estimation methods. First, the model is esti-

mated in first differences which enable us to expand the number of countries to 14, as discussed in Section 4. Second,

to check robustness and the importance of outliers, median, and weighted-least-squares (WLS) regressions are also

used. Section 5.3 contains estimates of the full model where we include a measure for human capital. Finally, Section

5.4 contains IV results.

In all regressions, we use a normalized value of the robot-intensity index. Specifically, we divide all industry-

country-year observations by the observation with the highest value. This implies that the normalized index takes on

values between 0 and 1. The mean and standard deviation of this normalized index are 0.066 and 0.15, respectively.

5.1 OLS and fixed-effects regressions

Our baseline results are presented in Table 4 below. Column 1 contains the most basic regression, where we just re-

gress the log of value-added on the log of total capital and the log of the total hours worked (our quantity measure of

labor input). Note that the results are largely consistent with constant returns to scale in the production function.

The coefficient of labor is around 0.6 and strongly significant. Furthermore, the size of the estimated coefficient of

capital (0.441) is only marginally higher than the values found by, for example, Stiroh (2005).

In column 2, we split the capital variable into ICT capital and non-ICT capital. Again, the results are comparable

to those found in Stiroh (2005). Both coefficients are significant, and the sum of the two coefficients is approximately

equal to the coefficient of the aggregated capital variable in column 1. However, the coefficient of non-ICT capital is

only around two times larger than the coefficient of ICT capital (0.15), although the average amount of non-ICT cap-

ital in production (and hence its revenue share) is more than four times the amount of ICT capital (cf. Table 3). This

could, as in Stiroh (2005), indicate that ICT capital is associated with higher returns than non-ICT capital.

In columns 3 and 4, we add the robot-intensity index. The estimated coefficient of the robot-intensity index is sig-

nificant at the 5% level when aggregate capital is used as in column 3. When non-ICT and ICT capital enter separate-

ly (column 4), it is seen that the significance level drops to 10%. However, this is also true for ICT capital, suggesting

that industry � country cells with high ICT capital also have a high robot-intensity index and vice versa, that is, the

fall in significance is due to a multicollinearity problem.

The results in columns 3 and 4 are consistent with the hypothesis that industrial robots have an additional effect

on value-added compared to other types of non-ICT capital. The higher the concentration of robots in the non-ICT

capital stock, the higher is productivity. Specifically, the point estimate of the robot-intensity index equals 0.44 in

column 4. This value represents the marginal rate-of-return to RI and implies that an increase of one standard devi-

ation (0.15) in the robot-intensity index is associated with 6.6% higher TFP. Alternatively, as the average industry

has a value of 0.066 of the robot index, it implies that its productivity level is 2.90% (0.44 � 0.066) higher than it

would be in the case without any robots.

Furthermore, adding the robot-intensity index to the regression raises the coefficient of the non-ICT capital vari-

able and lowers the coefficient of the ICT capital variable in column 4, so that their ratio is now more in line with the

ratio of non-ICT to ICT capital in production. In other words, when taking the amount of robots in non-ICT capital

into account, the importance of ICT capital in production decreases. This is a potentially interesting finding, which

might point to an omitted-variable bias in studies ignoring the robot intensity.

As discussed in Section 3, the OLS estimates in columns 1–4 are potentially biased and inconsistent. One potential

cause of this is quality differences in the stock of industrial robots across industries and countries, which are not cap-

tured by our robot-intensity index, cf. our discussion in Section 1. Another potential cause of this is differences in

productivity across industry-country cells that also affect the robot intensity, cf. our discussion in Section 3. This

could happen if more productive industries (or less productive industries) chose to use more or less industrial robots.
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Therefore, columns 5–8 present estimates similar to those in columns 1–4, but now adding fixed effects at the in-

dustry � country level, were implying that the coefficients are identified from changes over time within industry �
country cells.6 This significantly lowers the estimate of the coefficients of both ICT and non-ICT capital in columns 6

and 8, and the coefficients now become insignificant. It also reduces the coefficient of the overall capital variable in

columns 5 and 7, although it stays significant at the 10% level in column 7. These findings may reflect multicollinear-

ity between (changes in) the two types of capital. Moreover, physical capital enters positively and significantly when

equation (7) is estimated without year dummies. This indicates that it is hard to distinguish between the effects of

year dummies (a time trend) and the changes in physical capital in the short-time window used.

The point estimates of the robot-intensity index remain high and significant in columns 7 and 8. Furthermore,

estimates are higher in magnitude than those of columns 3 and 4. However, the obtained estimates under OLS and

fixed effects are not significantly different. This suggests that although a bias may be present in the OLS regressions,

it is not to an extent that changes the qualitative conclusions.7 Taken together, the results presented in Table 4

strongly supports the idea that a use of industrial robots adds to TFP through a more advantageous composition of

non-ICT capital.

5.2 Robustness checks

An alternative way to handle the potential quality differences of industrial robots and to remove the effects of time-

invariant productivity differences across industry-country cells is to estimate equation (7) in first differences. This

also allows us to utilize that we have information about the shipment of industrial robots to an additional five coun-

tries. As these countries are low-intensive users of industrial robots (International Federation of Robotics, 2011), the

depreciation of their current stocks of robots is likely to be limited. Therefore, we can use the shipments as proxies

for the changes in their stocks of robots in first-difference estimation. This approximation would not work for more

intensive robot-using countries, where the depreciation of the current stock would be relatively more important.

In column 2 of Table 5, we present the results of first-difference estimation where we use changes between 2004

and 2007 for all variables. Using 3-year differences instead of 1-year differences, reduces the importance of random

measurement error and hence the risk of attenuation bias. On the other hand, endogeneity problems may become

more severe by using 3-year differences, because the transformed error term includes more time periods (Draca et al.,

2009). In column 1 of Table 5, we have included the fixed-effects specification from column 8 of Table 4 for com-

parison purposes.

Compared to the fixed-effect specification, the robot-intensity coefficient increases slightly and remains strongly

significant in the first-difference specification. Furthermore, the non-ICT capital coefficient increases and becomes

significant at the 1% level, whereas the coefficient to ICT capital remains insignificant.

As discussed above, the robot-intensity index is not adjusted for quality changes in industrial robots over time.

Using the quality index for industrial robots of Figure 4, we know that the average annual improvement in quality is

6.2% for the period 1990–2005 and that it is 2.3% for the last 5 years up to 2005. We can perform a back-of-the-

envelope calculation to assess the impact on the estimation results for the first-difference estimation of not adjusting

for quality improvements. If we assume that qt, the annual quality change in robots, and D1Rt, the annual net change

in the number of robots, are constant over time, that is, qt ¼ q and D1Rt ¼ D1R, we can obtain a quality-adjusted

measure of the three-year change in the number of robots, which is equal to

D3Rt ¼ 3D1R� 1þ qð Þ þ 1þ qð Þ2 þ 1þ qð Þ3
� �

=3
� �

. This measure can then be used to recalculate the change in the

6 The applied 4-year period may be considered to be a relatively short period for using fixed effects and first differences.

The main argument for using this period is to avoid estimates to be too affected by quality changes in industrial robots

that we do not account for. The longer a time window we use, the more problematic is the quality issue. To investigate

the robustness of the estimated results, we have estimated Table 4, columns 5–8 using the 6-year period using data for

2002–2007. The obtained point estimates for the fixed-effects regression are of similar size and significance as the

results of Table 4. The results are available upon request.
7 As an alternative to the model in (7), where we use value added as the dependent variable, we can use a model with

gross output on the left-hand side and then include intermediate inputs as an extra regressor. Using this approach and

the fixed-effect specification, the coefficient of the robot-intensity index is still significant and positive, which brings

additional support to the results in Table 4.

14 L. Kromann et al.
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robot index: RItþ3 � RIt ¼ Rtþ3=Ktþ3 � Rt=Kt ¼ Rt þ D3Rtð Þ=Ktþ3 � Rt=Kt. Using this measure in the small sample

of 89 country � industry observations for the first-difference estimation, the point estimate becomes d ¼ 0:565 for

q ¼ 0, d ¼ 0:547 for q ¼ 2:3% and d ¼ 0:517 if q ¼ 6:2%. The main insight of this back-of-the-envelope robustness

analysis is thus that the obtained point estimate is relatively robust to small, but realistic, increases in the quality of

industrial robots.8

In sum, we find that taking these changes into account in the first-difference estimation do not imply important

changes in the point estimate for the robot-intensity index. This result provides further evidence for the result that

quality changes do not contaminate the obtained qualitative results when examining a short-time period.

The results of the first-difference specification may be partly affected by the presence of outlier observations. To

check for the importance of this, column 3 reports results when using a median-regression approach for the first-

difference specification in column 2, as this approach is more robust towards the presence of extreme observations.

The results are, however, very similar to those of column 2, which suggests that the observed relationship between

productivity and the robot intensity is not driven by outlier observations.

So far, all observations have been given the same weight in the regressions. Thus, a small industry in a small coun-

try, such as textiles, leather, and wearing apparel in Denmark, carries as much importance for the estimated regres-

sion coefficients as a large industry in a large country, such as motor vehicles and other transport equipment in

Germany. An alternative approach would be to estimate our model using WLS, where the weights are the labor input

in the different industry-country cells. This approach is used in Table 5, columns 4 and 5. In column 4, we use the log

of the wage bill as weights, whereas in column 5 we use the log of total employment. The latter approach is similar

Table 5. Productivity and automation, alternative estimation methods

1 2 3 4 5

Estimation method FE FD Median-FD WLS-FE WLS-FE

Persons engaged (L) 0.427*** 0.824*** 0.786*** 0.404*** 0.405***

(0.100) (0.190) (0.178) (0.097) (0.098)

Robot intensity (RI) 0.591** 0.785*** 0.627** 0.522** 0.524**

(0.238) (0.255) (0.298) (0.213) (0.211)

ICT capital (C) 0.049 0.023 �0.013 0.065 0.062

(0.076) (0.053) (0.049) (0.078) (0.078)

Non-ICT capital (K) 0.181 0.425*** 0.381*** 0.169 0.158

(0.123) (0.096) (0.088) (0.121) (0.120)

R2 0.359 0.392 0.207 0.355 0.349

Number of observations 356 139 139 356 356

Note: Data are for the period 2004–2007. The dependent variable in all columns is the log of valued added per worker. See main text and Table 3 for a description

of the explanatory variables. The industry “Other manufacturing products” is excluded for Sweden because values for non-ICT capital are not available. 2007 values

for Japan are missing and replaced by 2006 values, except in the case of industrial robots. Column 1 is identical to column 8 of Table 4. All variables in columns 2

and 3 are measured as the difference between 2004 and 2007, except in the case of Japan. Time, industry, and country dummies are included in columns 1, 4, and 5.

The estimation method in column 3 is median regression, whereas the estimation method in columns 4 and 5 is WLS. In column 4, the log of the wage bill is used as

weights, and in column 5, the log of total employment is used. Standard errors in brackets in columns 4 and 5 are clustered at the industry � country level; standard

errors for all columns are robust to heteroskedasticity and autocorrelation of unknown form. ***, and ** indicate significance at the 1%, and 5% level, respectively.

Source: EUKLEMS and International Federation of Robotics (2011).

8 If the depreciation of robots consists of low-quality vintages, we may not control in full for robot quality even though we

use a short window of time. We, however, consider this effect to be negligible, which can be explained using the logic

of the 3-year change in the robot stock; the measure that we use in the first-difference estimation. The 3-year change

equals net-investments in robots during the 3 years. That is, net-investments equal gross-investments � depreciations

of robot. IFR assumes that the average operating service life of an industrial robot is 12 years. This implies that we have

to deduct gross-investments from 1993 to 1995 (depreciations) from gross-investments from 2005 to 2007 when calculat-

ing the 3-year change between 2004 and 2007. If quality improvements are important the old gross-investments should

have lower weights to take quality improvements into account. However, investments in robots were at a low-level back

in the early 1990s, and therefore, we believe that it is safe to disregard this aspect.
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to that used by Stiroh (2005). In both columns, we estimate the fixed-effect specification from column 1, and, overall,

the results are very similar. This supports that the previous results were not driven by small industry-country cells. In

particular, the coefficient of the robot-intensity index is strongly significant in both columns 4 and 5.

5.3 Human capital

In order to analyze to which extent changes in worker quality drives the results, we have also estimated the model

including the share of skilled workers, cf. equation (7). This share increases from 75.8% in 2004 to 80.4% in 2007

on average in our data. The results of the estimation are shown in Table 6.

First, note that the share of skilled workers has a positive impact on productivity in all regressions. However, the

significance level varies across the five specifications. Second, the robot-intensity index still has a robust and signifi-

cant positive effect on productivity when the skilled share is included in the estimations. However, the coefficient of

the robot-intensity index is somewhat smaller than in Table 5. It decreases by approximately 0.1 but is still in the

range of 0.45–0.77. Specifically, the point estimate equals 0.52 in column 1. This magnitude implies that an increase

of one standard deviation in the robot-intensity index is associated with 7.8% (0.52 � 0.15) higher productivity.

This should be compared with 8.9% (0.59 � 0.15) that is the increase in productivity based on the point estimate of

Table 4, column 8 when the skilled share is not included in the regression.

5.4 Instrumental-variable estimations

Although the results in Tables 4 and 5 point to a strong and positive correlation between our robot-intensity index

and value-added when controlling for capital, labor input and time-invariant productivity differences across indus-

tries and countries, we cannot be sure that this reflects a causal effect of the industrial robots on productivity. There

might still be a risk that unobserved shocks to productivity also affect input choices (including the use of robots).

This could be the case if industries that are hit by positive shocks during the observed period invest more heavily in

robots. In that case, the coefficient of the robot-intensity variable will be upward biased.

To deal with this, we can use an instrumental-variable specification. A common approach in the literature is to es-

timate the model in levels and then use the lagged first differences of the explanatory variables as instruments (Stiroh,

Table 6. Productivity, automation, and worker quality

1 2 3 4 5

Estimation method FE FD Median-FD WLS-FE WLS-FE

Share of skilled workers (S) 0.517** 0.335 0.259 0.530* 0.521*

(0.260) (0.398) (0.344) (0.267) (0.264)

Persons engaged (L) 0.448*** 0.787*** 0.743*** 0.428*** 0.427***

(0.101) (0.184) (0.201) (0.097) (0.097)

Robot intensity (RI) 0.515** 0.765*** 0.586* 0.445** 0.448**

(0.231) (0.260) (0.332) (0.200) (0.200)

ICT capital (C) �0.004 �0.002 �0.022 0.015 0.012

(0.077) (0.065) (0.060) (0.077) (0.078)

Non-ICT capital (k) 0.194* 0.442*** 0.391*** 0.181 0.170

(0.114) (0.099) (0.099) (0.113) (0.113)

R2 0.386 0.397 0.214 0.383 0.377

Number of observations 356 139 139 356 356

Note: Data are for the period 2004–2007. The dependent variable in all columns is the log of valued added per worker. See main text and Table 3 for a description

of the explanatory variables. The industry “Other manufacturing products” is excluded for Sweden because values for non-ICT capital are not available. 2007 values

for Japan are missing and replaced by 2006 values, except in the case of industrial robots. The share of skilled workers is imputed for 2006 and 2007: first coefficient

values are estimated by OLS using data from 1970 to 2004, and then, the values for 2006 and 2007 are predicted. All variables in columns 2 and 3 are measured as

the difference between 2004 and 2007, except in the case of Japan. Time, industry, and country dummies are included in columns 1, 4, and 5. The estimation method

in column 3 is median regression, whereas the estimation method in columns 4 and 5 is WLS. In column 4, the log of the wage bill is used as weights, and in column

5, the log of total employment is used. Standard errors in brackets in columns 1, 4, and 5 are clustered at the industry � country level; standard errors for all columns

are robust to heteroskedasticity and autocorrelation of unknown form. ***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively.

Source: EUKLEMS and International Federation of Robotics (2011).
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2005). The idea behind these instruments is that previous changes in industrial robots can explain the current level in

these variables, but are (hopefully) uncorrelated with current shocks to productivity. This, of course, presupposes

that shocks are not too long-lived, which might be a dubious assumption. More precisely, validity of the instruments

requires that the lagged change in industrial robots is uncorrelated with the error term in (7). This assumption will be

tested below.

In columns 1 and 2 of Table 7, we first show the key results from Table 4. In column 3, a model in levels is esti-

mated assuming that the labor and capital variables are strictly exogenous. Assuming that the robot-intensity index is

predetermined, we use 3-year difference as instrument and for efficiency, the first lag is also added. Similar results are

obtained if we assume that robot-intensity is endogenous. The results are similar to those in column 1. Examining

post-estimation test, the partial R2 for the excluded instruments is high, 0.42, the null hypothesis of weak identifica-

tion is rejected, and the Hansen’s test shows that the instruments are valid. Hence, all common tests are satisfied.

However, testing for autocorrelation in the errors shows that the productivity shocks are serially correlated which

Table 7. Productivity and automation, instrumental variables, and system-GMM estimations

1 2 3 4 5 6

Estimation method OLS FE IV-level IV-FD SYS-GMM1 SYS-GMM2

Persons engaged (L) 0.577*** 0.427*** 0.577*** 0.196* 0.469*** 0.422**

(0.078) (0.100) (0.075) (0.109) (0.084) (0.182)

Robot intensity (RI) 0.443* 0.591** 0.489*** 0.768** 0.619*** 0.688***

(0.234) (0.238) (0.171) (0.191) (0.163) (0.214)

Non-ICT capital (C) 0.354*** 0.181 0.361*** 0.248** 0.396*** 0.360**

(0.073) (0.123) (0.070) (0.110) (0.071) (0.155)

ICT capital (K) 0.108* 0.049 0.103* 0.125** 0.111** 0.210*

(0.063) (0.076) (0.061) (0.052) (0.050) (0.122)

R2 0.986 0.359 0.985 0.198

N 356 356 356 356 356 356

Number of instruments 0 0 2 1 3 9

R2 for excluded IV for

Robot intensity (RI) 0.42 0.13

Under identification

Statistic 7.358 4.561

P-value 0.025 0.033

Weak identification

Statistic 32.984 4.571

RI endogenous

Statistic 4.818 3.675

P-value 0.010 0.058

Hansen test

Statistic 1.540 13.44 38.42

P-value 0.215 0.020 0.276

Ar2

Statistic 4.86 4.81 0.85 0.86 0.84

P-value 0.00 0.00 0.39 0.39 0.40

Note: See Table 4. In columns 3 and 4, two-stage least square estimation are used. In columns 5 and 6, GMM estimation are used. Instruments used are the follow-

ing: In column 3 (IV-level): (RI(t) � RI(t�3)) and (RI(t�1) � RI(t�4)). Test for redundancy of the extra instrument shows that the variable adds information. In col-

umn 4 (IV-FD): RI(t�1) � RI(t�4). In column 5 (SYS-GMM1): as in IV-level and IV-FD. In column 6 (SYS-GMM2): as in SYS-GMM1 for RI for labor, and the two

capital variables x(t�1) � x(t�2) and x(t�2) � x(t�3) is used for the level equation and x(t�2) and x(t�3) for the difference equations, where x refers to the specific

explanatory variable. The test results are shown for the following test: LM test for underidentification (H0: RI is not identified by the exclude IV). F test for weak iden-

tification (H0: small correlation between RI and the excluded IV). F test for RI endogenous (H0: coefficient on RI is equal to zero). Hansen test for validity of instru-

ments (H0: instruments are valid). Test for serial correlation in the differenced residuals, AR(2) test for AR(1) in levels. Stat refers to the test statistic and P to the

probability. We have also used other test, worth mentioning is Difference-in-Hansen, which have been used to understand which models was the best to use. For

details on the test see Baum et al. (2007) and Roodman (2007a,b). ***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively.

Source: EUKLEMS and International Federation of Robotics (2011).
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might lead to coefficients being biased or falsely significant at worst. This is most likely due to not removing the

effects of time-invariant productivity differences across industry-country cells.

This leads us to use a model in differences, column 4, still instrumenting the robot-intensity index. All the covari-

ates have positive significant coefficients, but they are somewhat lower (except for ICT capital and robot intensity)

than in columns 1 and 3. This is due to all the series being very persistent.

A better alternative is, therefore, to combine the two IV equations into a system often labeled “system GMM”.9

Results for the “system GMM” is shown in column 5. To avoid the problems of instrument proliferation (the main

concern of “system GMM”), only the instruments used in the two earlier columns (IV-level and IV-FD) are used. The

coefficients of all the variables are significantly positive and between those of the IV-level and IV-FD, leaning toward

the IV-level, except for the coefficients of the robot-intensity index that are in the middle. Several tests including the

Hansen test, however, indicate problems with the specification of the model. The difference-in-Hansen test (not

shown) indicates that the problem is the assumption of only the robot-intensity index not being strictly exogenous.

In column 6, we, therefore, relax the strictly exogenous assumption for labor input and the capital variables. All

coefficients are significantly positive and relatively close to the coefficients in the other columns.10 In the notes to the

table, we have specified the applied instruments for each variable. To limit problems of instrument proliferation, we

have limited the number of lags and have collapsed some of the instrument sets (Roodman, 2007a).

In sum, independent of the specific instrumental-variable approach used, we find that the IV point estimates are

of similar magnitude as the OLS and FE estimates, that the IV-point estimates are significantly different from zero,

and that the instrumental variables are not weak. We, therefore, conclude that there is relatively strong support for a

causal relationship between higher concentrations of robots in the non-ICT capital stock and higher productivity.

6. Other aspects of industrial robots

The previous section revealed a relatively robust relationship between the use of industrial robots and productivity.

This indicates that robots might help foster productivity growth in the manufacturing sector of developed countries.

This gives rise to two associated questions. The first is whether the reallocation of manufacturing activities from

developed countries to developing countries also leads to investments in industrial robots in the former countries.

The second is whether productivity growth based on increased automation will also bring additional jobs and/or

higher wages to developed countries, or whether this development will be at the expense of additional jobs and/or

wage growth. In this section, we provide some first answers to these questions.

6.1 Import competition and investments in robots

An important consequence of the relocation of manufacturing activity to the developing world is illustrated in Bloom

et al. (2016) who present descriptive statistics for the share of all imports in the Europe and the United States from

low-wage countries. Here, it is shown that the share of imports that originates from the developing world was less

than 5% in 1990 surging to more than 15% in 2007. In this development, China has played a crucial role.

Moreover, it is found that firms that are exposed to competition from Chinese imports innovate more than firms that

are not exposed or exposed to a lower degree.

Similarly, we might expect firms in the developed world that are exposed to higher pressure from international

competition from developing countries to invest more heavily in industrial robots. If this is the case, we would expect

to observe the largest increases in the robot-intensity index in industries and countries where imports from low-wage

countries have increased the most.

In Table 8, we, therefore, test whether import competition from low-wage countries has a positive and significant

effect on the robot-intensity index using the same estimation techniques as in Tables 5 and 6. That is, we regress the

robot-intensity index on the capital and labor variables as well as a variable measuring the import competition from

9 The “system” GMM estimator is designed for a short panel with many ID, independent variables that are not strictly

exogenous, fixed effects and heteroscedasticity, and auto-correlated errors.
10 If assuming that RI is endogenous the instrument for the difference equations are somewhat weak; however, if assum-

ing that RI is predetermined the partial R-squared in a regression of difference in RI on the instruments are significantly

improved. The Systen GMM regressions results for the two cases are almost exactly the same, and the test has similar

outcomes.
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China. The latter variable is constructed as the log of the proportion of total imports in industry i and country j that

originates from China.

Table 8 confirms that industries that have been exposed to a large increase in Chinese import competition have

increased the robot intensity by more than industries with more modest increases in import competition. The finding

is relatively robust across the different estimation methods in Table 8. Only for the median regression in first differen-

ces (column 3) do we find a lower (but still significant) point estimate.11

To get a sense of the economic significance of these estimates, one should bear in mind that the average increase

in Chinese import competition is around 0.47 resulting in an increase of 1% point (0.02 � 0.47) in the robot-

intensity index for the average industry between 2004 and 2007, which should be compared with an average initial

robot intensity of 6.68% in 2004. Moreover, for the 75th (90th) percentile, we find an increase of 0.98 (1.29) leading

to an increase of 2% (2.6) points in the robot-intensity index.12

These results thus support the hypothesis that industries in developed countries increase their robot intensity in re-

sponse to increasing Chinese import competition and that Chinese import competition may have played an important

role in increasing the robot intensity in the period considered. Combined with the results established in Section 5, this

suggests that industries that have been exposed to competition from low-wage countries have improved their prod-

uctivity by investing in industrial robots.13

Table 8. Robot intensity and import competition from China

1 2 3 4 5

Estimation method FE FD Median-FD WLS-FE WLS-FE

Import competition from China (impCHN) 0.020*** 0.019*** 0.005*** 0.020** 0.021**

(0.007) (0.006) (0.002) (0.008) (0.008)

Persons engaged (L) �0.046 0.087 0.045** �0.052 �0.053

(0.044) (0.066) (0.018) (0.044) (0.045)

ICT capital (C) �0.004 0.011 0.008 �0.005 �0.005

(0.016) (0.014) (0.005) (0.016) (0.017)

Non-ICT capital (K) �0.081 �0.032 �0.019** �0.081 �0.082

(0.053) (0.032) (0.008) (0.053) (0.056)

R2 0.115 0.105 0.064 0.110 0.111

Number of observations 356 129 129 356 356

Note: Data are for the period 2004–2007. The dependent variable in all columns is the robot-intensity index. Import competition from China is measured as log or

Dlog of Chinese imports to total imports. This variable is lagged two periods. See main text and Table 3 for a description of the other explanatory variables. The in-

dustry “Other manufacturing products” is excluded for Sweden because values for non-ICT capital are not available. 2007 values for Japan are missing and replaced

by 2006 values, except in the case of industrial robots. All variables in columns 2 and 3 are measured as the difference between 2004 and 2007. Time, industry, and

country dummies are included in columns 1, 4, and 5. The estimation method in column 3 is median regression, whereas the estimation method in columns 4 and 5 is

WLS. In column 4, the log of the wage bill is used as weights, and in column 5, the log of total employment is used. Standard errors in brackets in columns 1, 4, and 5

are clustered at the industry � country level; standard errors for all columns are robust to heteroskedasticity and autocorrelation of unknown form. ***, and ** indi-

cate significance at the 1%, and 5% level, respectively.

Source: EUKLEMS, International Federation of Robotics (2011), and WIOD.

11 Our estimation uses a lag of 2 years for Chinese import competition. This implies that we study the impact on the robot

intensity between 2004 and 2007 from changes in Chinese import competition during the period 2002–2005.
12 Another potential driver for investments in industrial robots is changing relative costs of robots. If automation costs fall

and the robot capability rises, then firms should substitute industrial robots for labor in production. However, working

more technical machines, whilst it may reduce labor headcount, also requires higher quality labor input. Changes in

relative wages may be another important driver for an increasing use of robots, such that a large increase in the rela-

tive wage for unskilled workers may increase the use of robots. We have also included log wages of unskilled workers,

medium-skilled workers, and high-skilled workers. There is some empirical support for higher use of automation in

industries that experience high increases in unskilled wages.
13 We do not apply the measure of Chinese import competition as an instrument for the robot intensity because we can-

not convincingly rule out effects running through omitted variables, that is, the exclusion restriction is not fulfilled in

this case. Bloom et al. (2016) find that firms exposed to large increases in Chinese import competition also have larger
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6.2 Robots, wages, and employment

This section looks briefly at the relationship between the use of robots, on the one hand, and wages and employment

on the other hand. The results are presented in Table 9. All regressions are carried out using fixed effects and first

differences.

In columns 1 and 2, we regress the log of the average wage in an industry-country cell on the log of ICT and non-

ICT capital per worker, the log of total employment and the robot-intensity index. In both regressions, we find a

positive and significant effect of the robot-intensity index, and the size of the estimated coefficient is remarkably ro-

bust across the two regressions. Thus, industry-country cells that have (or get) a higher intensity of robots also have

(or get) higher average wages. This could reflect both an individual effect (individuals with a given skill level are paid

more in these industries) or a composition effect (these industries hire more skilled persons). Without individual-level

data, we are not able to determine which explanation is the most important.

Columns 3 and 4 are similar to columns 1 and 2, except that we now use the wage share as the dependent vari-

able. In this case, we find no effect of the robot intensity. Coefficient estimates are all highly insignificant. Thus, there

seems to be no connection between the use of robots and the share of value-added going to workers. In other words,

robots are not diminishing the labor share of value-added.

Finally, columns 5 and 6 use the log of total employment in an industry-country cell as the dependent variable. In

this case, we use the log of total ICT and non-ICT capital (not per worker) on the right-hand side together with the

robot-intensity index. We do not find any significant relationship in this case. If we instead use the log of the number

of robots rather than the robot-intensity index, the estimated coefficient becomes significant in both regressions

(results not reported). Although, we are careful not to give this a causal interpretation, it is at least an indication that

robots do not crowd out labor at the industry level—and may even seem to affect employment positively.

In sum, we find that a higher robot-intensity in non-ICT capital is associated with higher average wages and per-

haps also higher employment—and it does not seem to diminish labor’s share in value-added. This is good news for

those who fear that robots will crowd out jobs and put a downward pressure on wages. The results are also consist-

ent with results found in, for example, Autor et al. (1998) and Krusell et al. (2000).

Table 9. Automation, wages, and total employment

1 2 3 4 5 6

Dependent variables Log (average wage) Wage share Log (total employment)1

Estimation method FE FD FE FD FE FD

Persons engaged (L) 0.282*** 0.648*** �0.083 �0.055

(0.080) (0.175) (0.087) (0.089)

ICT capital (C) �0.032 0.064* �0.055 0.025 �0.001 �0.011

(0.048) (0.036) (0.047) (0.028) (0.013) (0.034)

Non-ICT capital (K) 0.292*** 0.490*** 0.091 0.047 0.074*** 0.147***

(0.083) (0.084) (0.063) (0.048) (0.024) (0.042)

Robot intensity (RI) 0.363* 0.726*** �0.160 �0.059 0.088 0.198

(0.190) (0.263) (0.129) (0.140) (0.080) (0.158)

R2 0.393 0.573 0.087 0.032 0.445 0.114

Number of observations 356 139 356 139 356 139

Note: Data are for the period 2004–2007. The dependent variable in columns 1 and 2 is the log of the average wage rate; in columns 3 and 4, it is the wage share

defined as the total wage sum relative to value-added; and in columns 5 and 6, log of total employment is used. Explanatory variables are the log of total ICT and

non-ICT capital (not per worker) and the robot-intensity index. The industry “Other manufacturing products” is excluded for Sweden because values for non-ICT

capital are not available. 2007 values for Japan are missing and replaced by 2006 values, except in the case of industrial robots. Time dummies are included in all col-

umns. Standard errors in all columns are clustered by industry and country. 1Explanatory variables are the log of total ICT and non-ICT capital (not per person) and

the robot-intensity index. ***, and * indicate significance at the 1%, and 10% level, respectively.

Source: EUKLEMS and International Federation of Robotics (2011).

increases in their innovation activities as measured by counts of patents and number of computers per worker. In our

regressions, we include measures of IT, but we do not include patents.
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7. Conclusion

Policy makers and industry confederations in the developed world have for years been interested in finding methods

to stop the offshoring of manufacturing jobs, and they have even attempted to re-shore manufacturing activities and

jobs lost to the developing world. The main reason is that the manufacturing sector is believed to be essential to en-

sure continued welfare improvements. In particular, this sector is responsible for a large fraction of the economic ac-

tivity, contributes significantly to all innovations, and leads the way on trade.

In this article, we have analyzed three important and related questions: (i) Can industrial robots help raise the

productivity in the manufacturing sector? (ii) Does the level of competition from the developing world explain the

increased use of industrial robots in developed countries?, and (iii) Will the increased use of robots crowd out work-

ers and put pressure on average wages as feared by many? The answers we provide to these questions show that in-

dustrial robots may, in fact, help revive the manufacturing sector in the developed part of the world.

Our empirical study is carried out using a panel dataset covering 10 manufacturing industries in nine industrial-

ized countries. We illustrate that labor productivity has increased by more than 35% over the period from 1997 to

2007 in the manufacturing sector in the developed world, whereas employment has decreased. By using a Cobb–

Douglass production function, we show that the improvement in productivity is related to investments in industrial

robots. Moreover, our results indicate that industrial robots have an additional effect on productivity compared to

other types of non-ICT capital. This strongly supports the idea that industrial robots add to TFP through a more ad-

vantageous composition of non-ICT capital.

On a more technical note, we report two importing findings. First, as quality-adjusted measures of industrial

robots do not exist, that is, an old robot and a new robot are considered equally productive when constructing stocks

of industrial robots, quality differences and changes may contaminate empirical results. To control for this, we per-

form fixed-effects and first-difference estimations within a short-time window. Second, we perform instrumental-

variable regressions to investigate whether the estimated relationship between industrial robots and productivity is

causal.

Next, our data confirm that industries with higher international competition pressure from developing countries

invest more heavily in industrial robots. Combining this with our first finding, this suggests that developed countries

have reacted to increasing competition by adopting industrial robots and thereby improving their TFP.

Finally, there is no support in the data for decreasing wages or falling employment as a consequence of increased

automation. In contrast, we actually find that an increase in industrial robots is associated with higher average wages

and unchanged or even higher employment. The potential policy implications of our findings are significant:

Initiatives that may induce further automation to have the potential to both raise productivity and create more (and

better-paying) jobs. As the use of robots varies significantly across both the industrialized countries and the manufac-

turing industries, our findings strongly suggest that there is plenty of room for further automation in the battle for

jobs and market shares in the manufacturing sector of the developed world.
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